Efficient Lifted Relaxations of the Quadratic Assignment Problem

نویسندگان

  • Oliver Burghard
  • Reinhard Klein
چکیده

Quadratic assignment problems (QAPs) and quadratic assignment matchings (QAMs) recently gained a lot of interest in computer graphics and vision, e.g. for shape and graph matching. Literature describes several convex relaxations to approximate solutions of the NP-hard QAPs in polynomial time. We compare the convex relaxations recently introduced in computer graphics and vision to established approaches in discrete optimization. Building upon a unified constraint formulation we theoretically analyze their solution spaces and their approximation quality. Experiments on a standard benchmark as well as on instances of the shape matching problems support our analysis. It turns out that often the bounds of a tight linear relaxation are competitive with the bounds of semidefinite programming (SDP) relaxations, while the linear relaxation is often much faster to calculate. Indeed, for many instances the bounds of the linear relaxation are only slightly worse than the SDP relaxation of Zhao [ZKRW98,PR09], which itself is at least as accurate as the relaxations currently used in computer graphics and vision. Solving the SDP relaxations can often be accelerated considerably from hours to minutes using the recently introduced approximation method for trace bound SDPs [WSvdHT16], but nonetheless calculating linear relaxations is faster in most cases. For the shape matching problem all relaxations generate the optimal solution, only that the linear relaxation does so faster. Our results generalize as well to QAMs for which we deliver new relaxations. Furthermore by interpreting the Product Manifold Filter [VLR17] in the context of QAPs we show how to automatically calculate correspondences between shapes of several hundred points. CCS Concepts •Mathematics of computing → Semidefinite programming; Convex optimization; •Computing methodologies → Shape analysis;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semidefinite relaxations of the quadratic assignment problem in a Lagrangian framework

In this paper, we consider partial Lagrangian relaxations of continuous quadratic formulations of the Quadratic Assignment Problem (QAP) where the assignment constraints are not relaxed. These relaxations are a theoretical limit for semidefinite relaxations of the QAP using any linearized quadratic equalities made from the assignment constraints. Using this framework, we survey and compare stan...

متن کامل

Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem

We consider semidefinite programming relaxations of the quadratic assignment problem, and show how to exploit group symmetry in the problem data. Thus we are able to compute the best known lower bounds for several instances of quadratic assignment problems from the problem library: [R.E. Burkard, S.E. Karisch, F. Rendl. QAPLIB — a quadratic assignment problem library. Journal on Global Optimiza...

متن کامل

Trust Regions and Relaxations for the Quadratic Assignment Problem

General quadratic matrix minimization problems, with orthogonal constraints, arise in continuous relaxations for the (discrete) quadratic assignment problem (QAP). Currently, bounds for QAP are obtained by treating the quadratic and linear parts of the objective function, of the relaxations, separately. This paper handles general objectives as one function. The objectives can be both nonhomogen...

متن کامل

Copositive and semidefinite relaxations of the quadratic assignment problem

Semidefinite relaxations of the quadratic assignment problem (QAP ) have recently turned out to provide good approximations to the optimal value of QAP . We take a systematic look at various conic relaxations of QAP . We first show that QAP can equivalently be formulated as a linear program over the cone of completely positive matrices. Since it is hard to optimize over this cone, we also look ...

متن کامل

Semidefinite Programming Relaxations for the Quadratic Assignment Problem

Semideenite programming (SDP) relaxations for the quadratic assignment problem (QAP) are derived using the dual of the (homogenized) Lagrangian dual of appropriate equivalent representations of QAP. These relaxations result in the interesting, special, case where only the dual problem of the SDP relaxation has strict interior, i.e. the Slater constraint qualii-cation always fails for the primal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017